SAT-Based Subsumption Resolution CADE29

Robin Coutelier¹ Laura Kovács² Michael Rawson² Jakob Rath²

U. Liège, Liège, Belgium robin.coutelier@student.uliege.be

TU Wien, Vienna, Austria

2 July 2023

Out of memory!

Subsumption

Definition

A clause L subsumes a distinct clause M iff there is a substitution σ such that

$$\sigma(L) \subseteq^* M$$

where \subset^* is the sub-multiset inclusion relation.

If L subsumes M, then M is redundant and can be removed from the formula.

Subsumption - Examples

Example (propositional logic)

$$L = a \lor b$$
$$M = a \lor b \lor c$$

L subsumes M. It is "stronger" than M.

Subsumption - Examples

Example (propositional logic)

$$L = a \lor b$$
$$M = a \lor b \lor c$$

L subsumes M. It is "stronger" than M.

Example (FOL)

$$L = p(\mathbf{x}_1, \mathbf{x}_2) \lor p(f(\mathbf{x}_2), \mathbf{x}_3)$$

$$M = \neg p(f(c), d) \lor p(f(y), c) \lor p(f(c), \mathbf{g}(d))$$

L subsumes M with the substitution $\sigma = \{x_1 \mapsto f(y), x_2 \mapsto c, x_3 \mapsto g(d)\}.$

Subsumption - Intuition

Subsumption Resolution

Resolution (Simplified)

$$\frac{L^* \vee I' \qquad \neg \sigma(I') \vee M^*}{\sigma(L^*) \vee M^*}$$

Subsumption Resolution

Resolution (Simplified)

$$\frac{L^* \vee I' \qquad \neg \sigma(I') \vee M^*}{\sigma(L^*) \vee M^*}$$

Definition

Clauses M and L are said to be the main and side premise of subsumption resolution, respectively, iff there is a substitution σ , a set of literals $L' \subseteq L$ and a literal $m' \in M$ such that

$$\sigma(L') = \{ \neg m' \}$$
 and $\sigma(L \setminus L') \subseteq M \setminus \{ m' \}.$

Subsumption Resolution aims to remove a literal from the main premise.

Example (propositional logic)

$$L := \boxed{a \lor b \qquad M := \boxed{\neg a} \lor b \lor c}$$
$$M^* := b \lor c$$

 $\neg a$ is the resolution literal. M^* subsumes M and can replace M in the clause set.

Example (propositional logic)

$$L := \boxed{a \lor b} \qquad M := \boxed{\neg a \lor b \lor c}$$

$$M^* := b \lor c$$

 $\neg a$ is the resolution literal. M^* subsumes M and can replace M in the clause set.

Example (FOL)

$$L = p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$M = \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

$$\sigma = \{x_1 \mapsto g(y), x_2 \mapsto c, x_3 \mapsto e\}$$

Example (FOL)

$$L = p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$M = \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

$$\sigma = \{x_1 \mapsto g(y), x_2 \mapsto c, x_3 \mapsto e\}$$

$$p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$p(g(y), c) \lor p(f(c), e) \qquad \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

$$M^* := \neg p(f(y), d) \lor p(g(y), c)$$

Example (FOL)

$$L = p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$M = \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

$$\sigma = \{x_1 \mapsto g(y), x_2 \mapsto c, x_3 \mapsto e\}$$

$$\frac{p(x_1, x_2) \vee p(f(x_2), x_3)}{p(g(y), c) \vee p(f(c), e)} \qquad \neg p(f(y), d) \vee p(g(y), c) \vee \neg p(f(c), e)$$

$$M^* := \neg p(f(y), d) \vee p(g(y), c)$$

Subsumption Resolution - Intuition

Importance of Redundancy Elimination

```
$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30
...
132544. $ false
% Termination reason: Refutation
% Memory used [KB]: 308054
% Time elapsed: 6.654 s
```

Importance of Redundancy Elimination

```
$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30
132544. $ false
% Termination reason: Refutation
% Memory used [KB]: 308054
% Time elapsed: 6.654 s
$ vampire Problems/GRP/GRP140-1.p -fsr on -t 30
4918. $ false
% Termination reason: Refutation
% Memory used [KB]: 12025
% Time elapsed: 0.150 s
```

Relevance of Speed

Figure: Typical profiling results for a TPTP problem (GRP001+6).

Building upon Previous Work

Previous Work

[Rath et al., 2022] introduced a SAT-based subsumption procedure.

- Encode subsumption as SAT problem.
- Tailor SAT solver to reason over substitutions.
- Use SAT solver to find a suitable substitution for subsumption.

Building upon Previous Work

Previous Work

[Rath et al., 2022] introduced a SAT-based subsumption procedure.

- Encode subsumption as SAT problem.
- Tailor SAT solver to reason over substitutions.
- Use SAT solver to find a suitable substitution for subsumption.

Our Contribution

We build upon the work of [Rath et al., 2022].

- Introduce constraints for subsumption resolution.
- Convert subsumption resolution to SAT problem.
- Integrate subsumption and subsumption resolution in Vampire.
- Optimize the simplifying loop of Vampire.

Theorem (Subsumption Resolution Constraints)

Clauses M and L are the main and side premise, respectively, of an instance of the subsumption resolution rule SR iff there exists a substitution σ that satisfies the following four properties:

existence

$$\exists i \ j. \ \sigma(l_i) = \neg m_j$$

Theorem (Subsumption Resolution Constraints)

Clauses M and L are the main and side premise, respectively, of an instance of the subsumption resolution rule SR iff there exists a substitution σ that satisfies the following four properties:

existence
$$\exists i \, j. \, \sigma(l_i) = \neg m_j$$
 uniqueness
$$\exists j'. \, \forall i \, j. \, \left(\sigma(l_i) = \neg m_j \Rightarrow j = j'\right)$$

Theorem (Subsumption Resolution Constraints)

Clauses M and L are the main and side premise, respectively, of an instance of the subsumption resolution rule SR iff there exists a substitution σ that satisfies the following four properties:

existence	$\exists i j. \sigma(I_i) = \neg m_j$
uniqueness	$\exists j'. \forall i j. \big(\sigma(I_i) = \neg m_j \Rightarrow j = j' \big)$
completeness	$\forall i. \exists j. (\sigma(I_i) = \neg m_j \lor \sigma(I_i) = m_j)$

Theorem (Subsumption Resolution Constraints)

Clauses M and L are the main and side premise, respectively, of an instance of the subsumption resolution rule SR iff there exists a substitution σ that satisfies the following four properties:

existence
$$\exists i \ j. \ \sigma(l_i) = \neg m_j$$
 uniqueness $\exists j'. \ \forall i \ j. \ \left(\sigma(l_i) = \neg m_j \Rightarrow j = j'\right)$ completeness $\forall i. \ \exists j. \ \left(\sigma(l_i) = \neg m_j \lor \sigma(l_i) = m_j\right)$ coherence $\forall j. \ \left(\exists i. \ \sigma(l_i) = m_i \Rightarrow \forall i. \ \sigma(l_i) \neq \neg m_i\right)$

SAT variables

Let

$$L = \{l_1, \ldots, l_{|L|}\}$$
 $M = \{m_1, \ldots, m_{|M|}\}$

We define the following SAT variables:

- $b_{i,j}^+ \Leftrightarrow \sigma(l_i) = m_j$
- $b_{i,j}^- \Leftrightarrow \sigma(l_i) = \neg m_j$

This encoding is an extension of the one proposed by [Rath et al., 2022].

 $\sigma(l_i) = m_j$ means that the substitution $\sigma_{i,j}$ used to bind l_i to m_j is compatible with the other substitutions.

$$L = p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$M = \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

•
$$b_{1,1}^- \Leftrightarrow \{x_1 \mapsto f(y), x_2 \mapsto d\} \subseteq \sigma$$

$$L = p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$M = \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

- $b_{1,1}^- \Leftrightarrow \{x_1 \mapsto f(y), x_2 \mapsto d\} \subseteq \sigma$
- $b_{1,2}^+ \Leftrightarrow \{x_1 \mapsto g(y), x_2 \mapsto c\} \subseteq \sigma$

$$L = p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$M = \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

- $b_{1,1}^- \Leftrightarrow \{x_1 \mapsto f(y), x_2 \mapsto d\} \subseteq \sigma$
- $b_{1,2}^+ \Leftrightarrow \{x_1 \mapsto g(y), x_2 \mapsto c\} \subseteq \sigma$
- $b_{1,3}^- \Leftrightarrow \{x_1 \mapsto f(c), x_2 \mapsto e\} \subseteq \sigma$

$$L = p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$M = \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

- $b_{1,1}^- \Leftrightarrow \{x_1 \mapsto f(y), x_2 \mapsto d\} \subseteq \sigma$
- $b_{1,2}^+ \Leftrightarrow \{x_1 \mapsto g(y), x_2 \mapsto c\} \subseteq \sigma$
- $b_{1,3}^- \Leftrightarrow \{x_1 \mapsto f(c), x_2 \mapsto e\} \subseteq \sigma$
- $b_{2,1}^- \Leftrightarrow \{x_2 \mapsto y, x_3 \mapsto d\} \subseteq \sigma$

$$L = p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$M = \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

- $b_{1,1}^- \Leftrightarrow \{x_1 \mapsto f(y), x_2 \mapsto d\} \subseteq \sigma$
- $b_{1,2}^+ \Leftrightarrow \{x_1 \mapsto g(y), x_2 \mapsto c\} \subseteq \sigma$
- $b_{1,3}^- \Leftrightarrow \{x_1 \mapsto f(c), x_2 \mapsto e\} \subseteq \sigma$
- $b_{2,1}^- \Leftrightarrow \{x_2 \mapsto y, x_3 \mapsto d\} \subseteq \sigma$
- $b_{2,2}^+ \Leftrightarrow \{\bot\} \subseteq \sigma$

SAT variables - Example

$$L = p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$M = \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

- $b_{1,1}^- \Leftrightarrow \{x_1 \mapsto f(y), x_2 \mapsto d\} \subseteq \sigma$
- $b_{1,2}^+ \Leftrightarrow \{x_1 \mapsto g(y), x_2 \mapsto c\} \subseteq \sigma$
- $b_{1,3}^- \Leftrightarrow \{x_1 \mapsto f(c), x_2 \mapsto e\} \subseteq \sigma$
- $b_{2,1}^- \Leftrightarrow \{x_2 \mapsto y, x_3 \mapsto d\} \subseteq \sigma$
- $b_{2,2}^+ \Leftrightarrow \{\bot\} \subseteq \sigma$
- $b_{2,3}^- \Leftrightarrow \{x_2 \mapsto c, x_3 \mapsto e\} \subseteq \sigma$

SAT variables - Example

$$L = p(x_1, x_2) \lor p(f(x_2), x_3)$$

$$M = \neg p(f(y), d) \lor p(g(y), c) \lor \neg p(f(c), e)$$

- $b_{1,1}^- \Leftrightarrow \{x_1 \mapsto f(y), x_2 \mapsto d\} \subseteq \sigma$
- $b_{1,2}^+ \Leftrightarrow \{x_1 \mapsto g(y), x_2 \mapsto c\} \subseteq \sigma$
- $b_{1,3}^- \Leftrightarrow \{x_1 \mapsto f(c), x_2 \mapsto e\} \subseteq \sigma$
- $b_{2,1}^- \Leftrightarrow \{x_2 \mapsto y, x_3 \mapsto d\} \subseteq \sigma$
- $b_{2,2}^+ \Leftrightarrow \{\bot\} \subseteq \sigma$
- $b_{2,3}^- \Leftrightarrow \{x_2 \mapsto c, x_3 \mapsto e\} \subseteq \sigma$

$$\forall i. \exists j. \left(\sigma(I_i) = \neg m_j \vee \sigma(I_i) = m_j \right)$$

$$\forall i. \exists j. \left(\sigma(l_i) = \neg m_j \lor \sigma(l_i) = m_j \right)$$
$$\forall i. \exists j. \left(b_{i,j}^- \lor b_{i,j}^+ \right)$$

$$\forall i. \exists j. \left(\sigma(l_i) = \neg m_j \lor \sigma(l_i) = m_j \right)$$

$$\forall i. \exists j. \left(b_{i,j}^- \lor b_{i,j}^+ \right)$$

$$\bigwedge_i \bigvee_j b_{i,j}^- \lor b_{i,j}^+$$

$$\forall i. \exists j. \left(\sigma(l_i) = \neg m_j \lor \sigma(l_i) = m_j \right)$$

$$\forall i. \exists j. \left(b_{i,j}^- \lor b_{i,j}^+ \right)$$

$$\bigwedge_{i} \bigvee_{j} b_{i,j}^- \lor b_{i,j}^+$$

$$\bigwedge_{i} \bigvee_{j} b_{i,j}$$

SR Direct Encoding

$$\bigwedge_{i} \bigwedge_{j} [b_{i,j} \Rightarrow \sigma_{i,j} \subseteq \sigma]$$

$$\bigvee_{i} \bigvee_{j} b_{i,j}^{-}$$

$$\bigwedge_{i} \bigwedge_{i' \geq i} \bigwedge_{j' > j} \neg b_{i,j}^{-} \lor \neg b_{i',j'}^{-}$$

$$\bigwedge_{i} \bigvee_{j} b_{i,j}$$

$$\bigwedge_{j} \bigwedge_{i} \bigwedge_{i'} \neg b_{i,j}^{+} \lor \neg b_{i',j}^{-}$$

Structuring Variables

We define the following SAT variables:

• c_j is true iff m_j is the resolution literal.

$$c_j \Leftrightarrow \exists i. \, \sigma(I_i) = \neg m_j$$

.

Illustration

$$c_{1} \Leftrightarrow b_{1,1}^{-} \vee \ldots \vee b_{n,1}^{-}$$

$$\Leftrightarrow \sigma(I_{1}) = \neg m_{1} \vee \ldots \vee \sigma(I_{n}) = \neg m_{1}$$

$$c_{2} \Leftrightarrow b_{1,2}^{-} \vee \ldots \vee b_{n,2}^{-}$$

$$\Leftrightarrow \sigma(I_{1}) = \neg m_{2} \vee \ldots \vee \sigma(I_{n}) = \neg m_{2}$$

$$\vdots$$

SR Indirect Encoding

SAT-based compatibility

Revised existence

Revised uniqueness

Revised completeness

Revised coherence

$$\bigwedge_{i} \bigwedge_{j} [b_{i,j} \Rightarrow \sigma_{i,j} \subseteq \sigma]$$

$$\bigwedge_{j} \left[\neg c_{j} \lor \bigvee_{i} b_{i,j}^{-} \right] \land \bigwedge_{j} \bigwedge_{i} \left(c_{j} \lor \neg b_{i,j}^{-} \right)$$

$$\bigvee_{j} c_{j}$$

$$AMO(\{c_{j}, j = 1, ..., |M|\})$$

$$\bigwedge_{i} \bigvee_{j} b_{i,j}$$

$$\bigwedge_{i} \bigwedge_{j} \left(\neg c_{j} \lor \neg b_{i,j}^{+} \right)$$

Setting up is Expensive

The setup time takes a significant portion of the total runtime. We can reduce the setup time by setting up both subsumption and SR at the same time.

Optimized Forward Loop

```
procedure Simplify(F, M)
    for L \in F \setminus \{M\} do
        if checkS(L, M) then F \leftarrow F \setminus \{L\} return \top
    for L \in F \setminus \{M\} do
         M^* \leftarrow \text{checkSR}(L, M)
         if M^* \neq \bot then
            F \leftarrow F \setminus \{L\} \cup \{M^*\}
return \top
    return |
```

Optimized Forward Loop

```
procedure Simplify(F, M)
   for L \in F \setminus \{M\} do
       if checkS(L, M) then
       for L \in F \setminus \{M\} do
       M^* \leftarrow \mathsf{checkSR}(L, M)
       if M^* \neq \bot then
          F \leftarrow F \setminus \{L\} \cup \{M^*\} return \top
   return |
```

```
procedure Simplify*(F, M)
    M^* \leftarrow \bot
    for L \in F \setminus \{M\} do
        if checkS(L, M) then

\begin{array}{c}
F \leftarrow \overrightarrow{F} \setminus \{L\} \\
\text{return } \top
\end{array}

        if M^* = \bot then
          M^* \leftarrow \mathsf{checkSR}(L, M)
    if M^* \neq \bot then
     return 📗
```

Results - Graph

Figure: Comparison of the cumulative number of forward simplification loops solved by the different configurations of Vampire. The graph shows all the loops performed on all the TPTP problems.

Results - Tables

Prover	Average	Std. Dev.	Speedup
$Vampire_M$	42.63 <i>μs</i>	$1609.06\mu s$	0 %
Vampire ₁	$40.13\mu s$	$1554.52\mu s$	6.2 %
$Vampire_D^*$	$34.39\mu s$	$1047.85\mu s$	23.9 %
$Vampire_I^*$	$34.55\mu s$	$250.25\mu s$	23.4 %

Table: Average and standard deviation of the runtime of forward simplification loop on the TPTP problems.

Prover	Total Solved	Gain/Loss
$Vampire_M$	10 555	baseline
$Vampire_D^*$	10 667	(+141, -29)
$Vampire_I^*$	10 658	(+133, -30)

Table: Number of TPTP problems solved by the different configurations of Vampire. The options -sa otter -av off -t 60 were used for all runs.

Future Work

- Heuristically choose between direct and indirect encoding
- Extend technique to subsumption demodulation
- Investigate the drop in variance.
- Extend subsumption resolution to use an m.g.u. for the resolution literal.

Conclusion

- We have introduced a new method for subsumption resolution.
- SAT-based methods harness the power of modern SAT solvers.
- The setup time of the SAT-based methods is significant. However, we can reduce it by combining the setup of subsumption and SR.
- SAT-based methods are competitive with the state of the art.
- SAT-based methods are also very flexible and can be fine-tuned easily.

References

Rath, J., Biere, A., and Kovács, L. (2022). First-Order Subsumption via SAT Solving. In *FMCAD*, page 160.