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Subsumption

Definition
A clause L subsumes a distinct clause M iff there is a substitution o such
that

o(l)C* M

where C* is the sub-multiset inclusion relation.

If L subsumes M, then M is redundant and can be removed from the
formula.
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Subsumption - Examples
Example (propositional logic)

L=aVvb
M=aVvbVc

L subsumes M. It is “stronger” than M.
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Subsumption - Examples
Example (propositional logic)

L=aVvb
M=aVvbVc

L subsumes M. It is “stronger” than M.

Example (FOL)

L = p(Xl,XQ) V p(f(Xz),Xg,)
M = —p(f(c),d) vV p(f(y), c) v p(f(c), g(d))

L subsumes M with the substitution o = {x1 — f(y), x> — ¢, x3 — g(d)}.
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Subsumption - Intuition

ONRC\INENG

subsumes(L,M)
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Subsumption Resolution

Resolution (Simplified)

VI =o(l)V M*
o(L*) v M*
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Subsumption Resolution

Resolution (Simplified)

VI =o(l)V M*
o(L*) v M*

Definition

Clauses M and L are said to be the main and side premise of subsumption
resolution, respectively, iff there is a substitution o, a set of literals L’ C L
and a literal m" € M such that

o(L'y = {~m'} and o(L\L)C M\ {m'}.

Subsumption Resolution aims to remove a literal from the main premise.

)
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Subsumption Resolution - Example 1

Example (propositional logic)
L:=[a]vb M :=[-a]VbVc
M*:=bVc

—a is the resolution literal. M* subsumes M and can replace M in the
clause set.
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Subsumption Resolution - Example 1

Example (propositional logic)
L:=[a]Vvb M = c
M*:=bVc

—a is the resolution literal. M* subsumes M and can replace M in the
clause set.
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Subsumption Resolution - Example 2

Example (FOL)

L= p(X]_,X2) V p(f(Xz),X3)
M = —p(f(y),d) V p(g(y), c) V =p(f(c),e)
o={x1— g(y),x2— c,x3— e}
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Subsumption Resolution - Example 2

Example (FOL)

L= p(Xl,Xg) V p(f(XQ),X3)
M = —p(f(y),d) v p(g(y), c) V —p(f(c), e)
o={x1—g(y),x— c,x3— e}

p(x1,x2) V p(f(x2), x3)
p(g(y),c) v|p(f(c),e) -p(f(y),d) Vv p(g(y),c) V| —p(f(c),e)
M* = =p(f(y),d) v p(g(y),c)
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Subsumption Resolution - Example 2

Example (FOL)

L= p(Xl,Xg) V p(f(XQ),X3)
M = —p(f(y),d) v p(g(y), c) V —p(f(c), e)
o={x1—g(y),x— c,x3— e}

p(x1,x2) V p(f(x2), x3)
p(g(y),c) v|p(f(c),e) -p(f(y),d) Vv ; =p(f(c),e)
M* .= =p(F(y), d) V p(g(y), <)
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Subsumption Resolution - Intuition

M>*= SR(L,M)
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Importance of Redundancy Elimination

$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30

132544, §$ false

% Termination reason: Refutation
% Memory used [KB]: 308054

% Time elapsed: 6.654 s

SAT-Based Subsumption Resolution




Importance of Redundancy Elimination

$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30

132544, §$ false

% Termination reason: Refutation
% Memory used [KB]: 308054

% Time elapsed: 6.654 s

$ vampire Problems/GRP/GRP140-1.p -fsr on -t 30

4918. $ false

% Termination reason: Refutation
% Memory used [KB]: 12025

% Time elapsed: 0.150 s
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Relevance of Speed

Flame Graph

Jindexing..

Inferences::ForwardSubsumptionAndResolution::perform
Saturation::SaturationAlgorithm::forwardSimplify

Figure: Typical profiling results for a TPTP problem (GRP001+6).
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Building upon Previous Work

Previous Work

[Rath et al., 2022] introduced a SAT-based subsumption procedure.
@ Encode subsumption as SAT problem.
@ Tailor SAT solver to reason over substitutions.

@ Use SAT solver to find a suitable substitution for subsumption.
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Building upon Previous Work

Previous Work

[Rath et al., 2022] introduced a SAT-based subsumption procedure.
@ Encode subsumption as SAT problem.
@ Tailor SAT solver to reason over substitutions.

@ Use SAT solver to find a suitable substitution for subsumption.

Our Contribution

We build upon the work of [Rath et al., 2022].

Introduce constraints for subsumption resolution.

Convert subsumption resolution to SAT problem.

Integrate subsumption and subsumption resolution in Vampire.

°
°
°
@ Optimize the simplifying loop of Vampire.
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From Definition to Constraints

Theorem (Subsumption Resolution Constraints)

Clauses M and L are the main and side premise, respectively, of an
instance of the subsumption resolution rule SR iff there exists a
substitution o that satisfies the following four properties:

existence Jij.o(l;) = —~m;
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From Definition to Constraints

Theorem (Subsumption Resolution Constraints)

Clauses M and L are the main and side premise, respectively, of an
instance of the subsumption resolution rule SR iff there exists a
substitution o that satisfies the following four properties:

existence Jij.o(l;) = —~m;

uniqueness 3 . Yij. (o(l;) = —mj=j=])
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From Definition to Constraints

Theorem (Subsumption Resolution Constraints)

Clauses M and L are the main and side premise, respectively, of an
instance of the subsumption resolution rule SR iff there exists a
substitution o that satisfies the following four properties:

existence Jij.o(l;) = —~m;
uniqueness 3 . Yij. (o(l;) = —mj=j=])
completeness Vi.3j. (o(l;) = ~mj Vv o(l;) = mj)
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From Definition to Constraints

Theorem (Subsumption Resolution Constraints)

Clauses M and L are the main and side premise, respectively, of an
instance of the subsumption resolution rule SR iff there exists a
substitution o that satisfies the following four properties:

existence Jij.o(l;) = —~m;
uniqueness 3 . Yij. (o(l;) = —mj=j=])
completeness Vi.3j. (o(l;) = ~mj Vv o(l;) = mj)

coherence Vj. (3i.o(l;) = mj = Vi.o(l;) # —~m;j)
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SAT variables

Let
L={h,...;hg} M={my,....,mum}
We define the following SAT variables:
° bITZ- < o(l;) = m;
° b,-_J & o(l)=—-mj
This encoding is an extension of the one proposed by [Rath et al., 2022]. )

o(l;) = m; means that the substitution o; ; used to bind /; to mj is
compatible with the other substitutions.
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SAT variables - Example

L= p(Xl,Xz) V p(f(Xz),X3)

M = —p(f(y),d) V p(g(y), c) V =p(f(c),e)

o by e {arfly),e—dtCo
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SAT variables - Example

L= p(Xl,Xz) V p(f(XQ)./ X3)

M = —p(£(y),d) V pg(y), ) V —p(f(c).e)

o by e {xarf(y),x—dCo
° bf’2 s {x1—gly),e—ctCo
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SAT variables - Example

L= p(Xl,XQ) V p(f(XQ), X3)

M = —p(f(y).d) V p(g(y), c) V =p(f(c), €)

o by e {xarf(y),x—dCo
° bf’2 S {x1—gly),xe—ctCo

° b3 & {xa—=f(c)xx—e}Co
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SAT variables - Example

L = p(x1,%2) V p(f(x2), x3)
M = —p(f(y), d) V p(g(y), c) V =p(f(c),e)

by e {xfly),x—dCo

bif2 S {x1—gly),xe—ctCo

b3 & {x1—f(c),xx—e}Co

byy & {e—yx3—dtCo
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SAT variables - Example

L = p(x1,%2) V p(f(x2), x3)
M = —p(f(y),d) v p(g(y),c) v —p(f(c),e)

by, & {a—fly)xe—diCo

bif2 S {x1—gly),xe—ctCo

b3 & {x1—f(c),xx—e}Co

by; & {x—yx3—dtCo
b{2¢){J_}Qa
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SAT variables - Example

L = p(x1,%2) V p(f(x2), x3)
M = ﬁp(f(y)ﬁ d) \% p(g()/)ﬁ C) v _'p(f(c)a e)

by, & {a—fly)xe—diCo

bif2 S {x1—gly),xe—ctCo

b3 & {x1—f(c),xx—e}Co

by; & {x—yx3—dtCo
b{2¢){J_}Qa

by; & {xx—c,x3—e}Co
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SAT variables - Example

L= p(x1,x) V p(f(x2), x3)
M = —p(f(y),d) vV p(g(y), ) V =p(f(c), e)

by, & {a—fly)xe—diCo

bif2 S {x1—gly),xe—ctCo

b3 & {x1—f(c),xx—e}Co

by; & {xx—=y,x3—>d} Co
b{2®{J_}QJ

by; & {xx—c,x3—e} Co

SAT-Based Subsumption Resolution



Constraint to SAT Encoding - Completeness

The constraints can be encoded using a simple procedure. For example the
completeness constraint:

Vi. 3. (o(h) = ~m; V o) = m))
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Constraint to SAT Encoding - Completeness

The constraints can be encoded using a simple procedure. For example the
completeness constraint:

Vi.dj. (0’(/,') =-m;V U(/,') = mj)
Vi.3j. (bi; Vv b))
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Constraint to SAT Encoding - Completeness

The constraints can be encoded using a simple procedure. For example the
completeness constraint:

Vi.dj. (0’(/,') =-m;V U(/,') = mj)

Vi.3j. (bi; Vv b))

/\\/bi—JVbj:j
J

i
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Constraint to SAT Encoding - Completeness

The constraints can be encoded using a simple procedure. For example the
completeness constraint:

Vi.dj. (0’(/,') =-m;V U(/,') = mj)
Vi.3j. (bi; Vv b))

/\\/bwvbJr
/\\/bu
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SR Direct Encoding

SAT-based compatibility AN\ Ibij= oij € ol
SAT-based existence \/ \/ bi_J
SAT-based uniqueness /\ /\ /\ /\ —|bl._J V —|bl.7J,
Joi iz >y
SAT-based completeness /\ \/ b j
+ —
SAT-based coherence /\ /\ /\ —|b,.,j V ﬁbi,d.

SAT-Based Subsumption Resolution 17 / 26



Structuring Variables

We define the following SAT variables:

@ ¢ is true iff m; is the resolution literal.

Cj <= E|i.0’(/,') = mj

[llustration

b V... Vb
< o(h)=—-mV...Vo(l,)=—-m
Q& b,V Vb,

S o(h)=—-mV...Vo(l) =-m
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SR Indirect Encoding

SAT-based compatibility AN\ Ibij = oij C ol
i

Structurality /\ [—'cj \% \/ b;] A /\ /\ (cj \% _'bi_J)
j i Ji

Revised existence \/ or
J
Revised uniqueness AMO({cj,j =1,...,|M|})
Revised completeness /\ \/ bi ;
i
Revised coherence /\ /\ <ﬂcj \% —|b,t,->

Jjoi
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Setting up is Expensive

The setup time takes a significant portion of the total runtime. We can

reduce the setup time by setting up both subsumption and SR at the same
time.
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Optimized Forward Loop

procedure Simplify(F, M)

for Le F\ {M} do

if checkS(L, M) then
F <« F\{L}
return T

for Le F\ {M} do
M* <— checkSR(L, M)
if M* #£ 1 then
F <« F\{L} u{M*}
return T

L return L
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Optimized Forward Loop

procedure Simplify(F, M) procedure Simplify*(F, M)

M* +— L
for'LeF\{M} do for Le F\ {M} do
if checkS(L, M) then if checkS(L, M) then
F F\{L} Fe F\{L}
| Lreturn T return T
for L € F\ {M} do if M" = 1 then
M* < checkSR(L, M) | M* < checkSR(L, M)
if M* = 1 then .
F o F\{L}U{M*) if M*# L then
return T Fe PA{LT UM
L L return T
L return L L return L
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Results - Graph

—e— Vampire_M
—+— Vampire_|

—s— Vampire* D
—— Vampire*_|

Time (us)
8

Number of instances solved (cumulated) 1le9

Figure: Comparison of the cumulative number of forward simplification loops
solved by the different configurations of Vampire. The graph shows all the loops
performed on all the TPTP problems.
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Results - Tables

Prover | Average Std. Dev. | Speedup
Vampirep, | 42.63 us  1609.06 us 0%
Vampire; | 40.13pus  1554.52 s 6.2 %
Vampire}, | 34.39 us  1047.85 pus 23.9%
Vampire] | 34.55us  250.25 pus 23.4%

Table: Average and standard deviation of the runtime of forward simplification
loop on the TPTP problems.

Prover | Total Solved Gain/Loss
Vampirey, 10555 baseline
Vampire, 10667 (+141, —29)
Vampire} 10658 (+133, —30)

Table: Number of TPTP problems solved by the different configurations of
Vampire. The options -sa otter -av off -t 60 were used for all runs.
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Future Work

Heuristically choose between direct and indirect encoding
Extend technique to subsumption demodulation

Investigate the drop in variance.

Extend subsumption resolution to use an m.g.u. for the resolution
literal.
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Conclusion

@ We have introduced a new method for subsumption resolution.
@ SAT-based methods harness the power of modern SAT solvers.

@ The setup time of the SAT-based methods is significant. However, we
can reduce it by combining the setup of subsumption and SR.

@ SAT-based methods are competitive with the state of the art.

@ SAT-based methods are also very flexible and can be fine-tuned easily.
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